
SCARLET

A FRAMEWORK FOR CONTEXT AWARE COMPUTING

BY

PATRICK WAGSTROM

Submitted in partial fulfillment of the
requirements for the degree of

Master of Science in Computer Science
in the Graduate College of the
Illinois Institute of Technology

Approved
Adviser

Chicago, Illinois
July 2003

c© Copyright by

Patrick Adam Wagstrom

2003

ii

ACKNOWLEDGMENT

I would like to thank my adviser Dr. Xian-He Sun for giving me the support and

freedom I needed for my graduate studies. Portions of the initial implementation

were done by Andrei Makhanov and the Java interface was created by Tyler Butler.

This project would not be the success it is without the help and feedback of Brent

Lagesse, Nehal Mehta, Naga Kunderu, and Vijay Gurbani. Furthermore, I would like

to thank my parents and Kristina for their support and their continual reassurances

that I would be able to finish this.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENT . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF ABBREVIATIONS . viii

CHAPTER

I. INTRODUCTION . 1

1.1 Introduction to Context Awareness 2
1.2 Review of Literature 5
1.3 Overview of Work . 10

II. AN OVERVIEW OF SCARLET 12

2.1 Cross-Platform Compatibility 15
2.2 Scalability . 17
2.3 Modularity . 19
2.4 Extensibility . 20

III. SCARLET COMPONENTS 21

3.1 Module Overview . 22
3.2 Scarlet Base . 23
3.3 Local Registry . 25
3.4 Domain Registry . 28
3.5 Provider Module . 29
3.6 Consumer Module . 33
3.7 Security Module . 35
3.8 Consumer API . 35
3.9 Provider API . 36

IV. IMPLEMENTATION DETAILS 37

4.1 Runtime Execution Model 38
4.2 Provider API Implementation 41
4.3 Consumer API Implementation 43
4.4 Performance Details 44
4.5 Other Implementations 46

iv

CHAPTER Page

V. SCARLET APPLICATIONS 47

5.1 Graphical Service Browser 47
5.2 Wireless Strength Monitor 49
5.3 Television Assistant 52
5.4 Other System Examples 55

VI. CONCLUSION AND FUTURE WORK 58

6.1 Future Work . 60

BIBLIOGRAPHY . 62

v

LIST OF TABLES

Table Page

3.1 Scarlet Level Descriptions . 21

4.1 Scarlet Memory Consumption on Sharp Zaurus SL-5500 44

4.2 Scarlet Memory Consumption on AMD Athlon Linux 45

6.1 Pervasive Computing Comparison . 59

vi

LIST OF FIGURES

Figure Page

3.1 Levels in Scarlet . 22

3.2 Scarlet Components . 23

3.3 Multi-level Registry Query . 26

4.1 Scarlet Start Up Procedure . 40

4.2 Simple Counter Provider . 43

4.3 Simple Counter Consumer . 44

5.1 Handheld Graphical Service Browser 48

5.2 Desktop Graphical Service Browser 49

5.3 Wireless Strength Provider Code . 51

5.4 Wireless Strength Provider WSDL 53

5.5 Television Assistant Application . 55

vii

LIST OF ABBREVIATIONS AND SYMBOLS

Abbreviation Term

API Application Programming Interface

DNS Domain Name Service

FPGA Field Programmable Gate Array

HTTP Hyper Text Transfer Protocol

IP Internet Protocol

PDA Personal Digital Assistant

SOAP Simple Object Access Protocol

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

WSDL Web Services Description Language

viii

ABSTRACT

Most computer programs are controlled strictly based on program parameters and

user input. Context awareness is the ability for a computer program to obtain infor-

mation and alter behavior based on sources other than user input. Information that

may be used in a context aware system is the actual physical location of the device,

the people in the room, physical data obtained from sensors, or information about

the current computer. While there have been a variety of attempts to create context

aware systems most leave the developer using proprietary tools or mandate a partic-

ular programming paradigm. Scarlet is a new system for developing context aware

applications that harnesses the power of web services technologies to allow communi-

cation and flexibility among the devices in a context aware system. It has shown itself

to be scalable, cross-platform, modular, and extensible through the development of

several sample applications.

ix

1

CHAPTER I

INTRODUCTION

The world is becoming more interconnected. Devices such as mobile phones

that were designed to transfer only voice information are gaining the ability to transfer

images, video, and data. At the same time personal digital assistants are gaining

mobile phone capabilities and seeing an explosive growth in computational power. It

is now possible to pay a few hundred dollars and get a handheld computer that is

more powerful than a desktop computer from just a few years ago.

When Mark Weiser first described what we now call pervasive computing in

1991 he noted that “the most profound technologies are those that disappear. They

weave themselves into the fabric of everyday life until they are indistinguishable from

it[36]1”. We’ve seen this happen with a variety of technologies over the past decade.

Things that we take for granted now, such as cellular phones, personal digital as-

sistants, and even the Internet were once restricted to the technological elite, far

from the public eye. Now they’re all part of our daily lives; visible in corporations,

universities, and even the corner coffee shop.

These technologies have a broad impact on the way we do business and interact

with others. Consider the action of organizing a group of friends for an outing to see

a movie. Your friends may not be at home when you’re trying to organize the outing,

but may still want to see the movie with you. You can look up the times that the

movie shows using the a web site that lists all movie show times for your city, call

your friends on their mobile phones to let them know when and where you are seeing

the movie, and finally download the map to your PDA so you don’t get lost on the

way there. This series of actions seems almost commonplace now.

However, there still are major issues with the integration of these technologies.

1numbers in brackets refer to entries in the bibliography

2

While they function well enough in their own regard, they don’t operate well with

other systems. In the previous scenario each action needed to be performed separately.

The first action was using the Internet to look up movie show times. After looking

up the show times, each of the friends had to be called and informed about the time

and location of the movie. Finally, another service such as MapQuest[23] was used

to get a map to the movie theater.

This is just one example, there are hundreds of situations we often face with

technology where the lack of integration among the components makes the task dif-

ficult or even impossible. It would have been nice if in the web site could have

automatically retrieved the schedules and locations of all the people interested in see-

ing the movie and then pick a theater and show time that work for all those involved.

Without a scalable platform on which to develop communication solutions, the vision

of a truly connected future may never arrive. Scarlet seeks to lay the foundation for

such a communication system.

1.1 Introduction to Context Awareness

When any action is performed it has a context in which it is performed. This

context provides additional information about the action or situation. For instance,

if I were to run around while playing a friendly game soccer, such behavior would

be considered normal, in fact I would be rewarded for that behavior if it contributed

to the team effort. However, if I were to run around while taking an exam, I would

be punished for such behavior. The difference is the context in which the action is

performed, one is done in the context of an athletic event, while the other is done in

the context of an academic assessment. In this case, context can be used to decide if

an action is appropriate or not.

The previous two contexts of a soccer game and academic assessment are fairly

easy to identify based on time and location. Throughout an academic semester class

3

may be held every Thursday evening at 6:25pm in room 113 while the intramural

soccer team may have games at 2:00pm on Saturday on the intramural sports field.

Although these two contexts are easy to identify based on easily observable param-

eters, many situations require more than just time and location to fully understand

the context.

If we examine the concept of a smart classroom such as the example from

the Reconfigurable Context Sensitive Middleware project we see an example of a

situation that needs more than simple time and location information[37]. In this

scenario a professor is using computer presentation software and an LCD projector to

give a presentation to a group of students. The instructor has a handheld computer

with a copy of the presentation material stored on it and would like like to distribute

a copy of the slides to each student’s handheld or notebook computer when he starts

the presentation. The problem in this scenario is knowing when the professor actually

begins the presentation. This requires analyzing and understanding the context of

the professor’s actions.

There are certain pieces of information that will prove helpful for the slide

distribution program; these can be obtained by observing people giving presentations

in a similar environment. In most cases while presenting, the presenter will stand near

the projector, the lights will be dimmed to enhance the image from the projector, and

the room will be quiet to allow everyone to hear the presenter. Observation allows

us to see that once these three criteria are met it is a safe assumption that the

presentation has started. Thus, there are three pieces of context information that

inform us when to distribute the slides; the location of the professor, the level of light

in the room, and the level of noise in the room.

Each of the aforementioned pieces of information helps us establish context

for actions. Within Scarlet a single piece of information that helps establish context,

such as “the light is on” or “it is 73 degrees outside,” is called a context nugget. An

4

application or device that provides context nuggets is called a context provider while

an application or device that requests context nuggets is called a context consumer.

There may be some cases where an application utilizes context information to provide

new pieces of context. In Scarlet these are called context aggregators. In the smart

classroom scenario whether or not the professor is currently showing a presentation

could be used as a context nugget for another program, so it may make sense to utilize

a context aggregator.

Problems arise when we examine how a computer is able to process context.

As a computer is simpler than a Turing machine, it is able to act only upon inputs

given to the program. Thus, unless we want our slide distribution to be constantly

distributing information, there must be a piece of information that acts as an input

trigger to start sending the slides. Most current technology gets this information

through invasive requests of the user, usually through a dialog box or other means.

Such interaction causes a shift in the focus of the user, slowing them down and causing

a degraded user experience.

What is required is a way to make applications aware of the surrounding

context with minimal user interaction. Schilit and Theimer were the first to describe

such a system and called it “context-aware”[31]. It was described it as the location,

identities of nearby people, and objects and changes that occur in such information.

Further work[4] refined this definition slightly to include other information such as

the time of day, season, weather outside and other physical characteristics. For the

purpose of this document, context is defined as information that describes a entities

physical or programmatic state. Specifically, we are interested in information relevant

to the execution of an application and the state of the associated user.

5

1.2 Review of Literature

There are a variety of systems available that provide context to applications at

one level or another; an exhaustive listing and analysis of all such systems is not pos-

sible here. Instead, this section examines three representative projects that illustrate

different ways of approaching the issue of context awareness. First we examine Re-

configurable Context-Sensitive Middleware (RCSM) from Arizona State University.

RCSM uses an object request broker similar to those found in CORBA to handle

context information. Next we examine One.world a Java based approach from the

University of Washington that utilizes special features of the Java programming lan-

guage to provide a complete framework for pervasive computing. The last system

examined is Context Toolkit from Georgia Institute of Technology. Context Toolkit

seeks to provide an interface for the exchange of context information.

1.2.1 Reconfigurable Context-Sensitive Middleware. Reconfigurable

Context-Sensitive Middleware (RCSM) from Arizona State University is a system to

provide context awareness and analysis in an environment of handheld and desktop

computers with ad hoc organization[37]. In the context of RCSM, ad hoc refers to the

links between various applications on different computers that need to be dynamically

established and deleted based on changing contexts and network connectivity.

The bulk of the work in RCSM lies in an object request broker, called the

R-ORB, that runs on each device in the system. Context is generated through a

context expression and method signature that is expressed in a special context aware

interface definition language (CA-IDL). This interface is then compiled to generate

an adaptive object container (ADC). The ADC can then be used to generate stubs for

a transport independent implementation of the context object. This implementation

can be in any of the supported languages, such as C, C++, C#, or Java. This multi-

tier abstraction helps ease the development of new sources of context information.

6

Communication with the context sources and the management of context is

done internal to the running instance of R-ORB. Each piece of context is assigned a

variable in the CA-IDL script for the ORB and the interactions among the context

variables can be represented via boolean equations. The ORB then monitors the

values of the variables and when a boolean expression is satisfied a method is invoked

on a remote object, such as a method to distribute slides of a lecture to the group of

students present.

There are many cases where a single device may not have all the requisite

information necessary to active a context-sensitive method. In those cases, multiple

R-ORBs can interact via the RCSM general inter-ORB protocol (R-GIOP). R-GIOP

is an ad hoc networking protocol designed for situations where communication may

not be guaranteed, such as in a wireless network. This allows an R-ORB to obtain

context information from a remote R-ORB.

There are several points where RCSM excels and is greatly successful. Because

it has been designed from the ground up as a system for context awareness in ad hoc

environments, there is no infrastructure requirement for the system. Also, the base of

the system is implemented in hardware through customized FPGAs and in software

through non-interpreted programming languages, such as C. This means the code has

a very small footprint, a requirement for handheld devices. Most importantly, RCSM

provides a method to collect context information in which the programs that read the

context information from the sensors can be agnostic about the how to transmit the

information as that is taken care of by the bindings. This allows sensor developers

to focus on reading the information from the sensor rather than how to send the

information to other hosts.

However, there are some serious drawbacks to using RCSM. By utilizing cus-

tom protocols for communication, RCSM has rendered itself inoperable with the bulk

of programming languages available. Also, by having all context processed in the

7

R-ORB and represented by boolean equations, there are conceivable situations where

RCSM will not work. Finally, in order to add a new source of context for RCSM, one

is required to extend the CA-IDL compiler. This is a huge drawback which greatly

limits the efficiency of the system as developers of sensors must not only be aware of

how to read the data from the sensor, but also understand the structure and code of

the CA-IDL compiler[35].

1.2.2 One.world. One.world[17], from the University of Washington is a

Java based approach to provide a complete system for pervasive computing. Under

a One.world environment, a user could have a contact list application that runs on

her desktop at work. When she goes home she can access her contact list from her

home video game console. On the road she may be able to access the system from her

mobile phone, or she could use the computational facilities present in her location to

access her contact list. No matter where she goes her information is accessible and

usable as long as she has network access.

One of the most basic premises of One.world is that the current computing

infrastructure is unable to address the requirements for a distributed pervasive archi-

tecture. Specifically, the current modes of interaction are not well suited for the wide

variety of hardware devices in use. While we now see a huge variety of devices con-

nected to the Internet and able to communicate over the Internet, most applications

are still built for desktop computers and have the same windowed interface style that

has been prevalent for the last twenty years. Secondly, network connectivity is not

a guarantee. Even in highly modernized areas, such as Chicago, there are network

outages that make it impossible for information to leave the network. The only way

to protect against such outages is to have multiple physical connections, but this is

not practical or even possible in most situations. Thirdly, as the Internet is a network

of networks, there are a wide variety of administrative domains involved. This makes

8

it very difficult to see if a lost message was due to a policy decision on some a network

or because of a genuine network failure [18].

The strength of one.world comes in the way that information is passed from

one system to another. Realizing that architectures read bytes differently, one.world

does not rely on byte streams for information, but rather stores information as tuples.

An individual tuple can be read from, written to, or taken (a procedure where it is

read and delete atomically). These tuples allow formulated data structures to be

passed from one entity to another with ease.

Another interesting feature of One.world is that adaptability lies in the pro-

gram level[19]. This is done because of perceived problems that are inherent in trans-

parent adaptability. For instance, an application may need to adapt behavior when

the computer it is running on switches from a 100Mbps wired network to an 11Mbps

wireless network. If the adaption were done at the infrastructure level the application,

which could be a movie player, would never know it had to change some parameters to

best use the available bandwidth. When done at the application level, the application

knows to switch to a lower quality video or audio stream.

One.world has been successfully used in the Labscape project at the Univer-

sity of Washington. Labscape provides a ubiquitous computing environment for cell

biologists in which all devices are networked together and information is automati-

cally transferred from one source to another, eliminating the need for lab notebooks

The original implementation of Labscape was done using standard TCP sockets and

another implementation was done using One.world. The TCP socket implementa-

tion was found to not be flexible enough and too slow for the needs of the users. A

reimplementation in One.world made the system quite usable and functional[1].

However, the usefulness of One.world comes at a cost. One of the major draw-

backs is that it imposes a specific programming model upon application developers.

This is done to enhance security and ease manageability, but ends up limiting where

9

One.world will be useful as it may prove difficult to adapt to new programming strate-

gies such as aspect oriented programming. In the Labscape study this was not found

to be a severe issue, however more work will need to be done to verify that. Another

major drawback of One.world is that it relies on Java and methods specific to Java

for much of the functionality. This includes serialization of tuples and methods from

one process to another. Thus, an implementation of One.world in another language

would not be compatible with the current implementation of the system.

1.2.3 Context Toolkit. The Context Toolkit[8, 9] from Georgia Institute

of Technology is a system that is focused solely on context awareness. It has six main

services that it provides; encapsulation of sensors, access to context data through

a network API, abstraction of context data through interpreters, sharing of context

data through a distributed infrastructure, storing of context data and history, and

basic access control for privacy protection.

The system consists of several components. Context widgets mediate access

between a user and an application, as such they function very similar to widgets

found in GUI applications. Context aggregators are specialized widgets that have

all the capabilities of standard context widgets but also have the ability to take

information from multiple widgets to form a single piece of context, this is the basis

for their implementation in Scarlet. A context interpreter is an application that can

utilize the low level information provided by context widgets and convert it into useful

information. In the smart classroom example, a context interpreter would examine

the current light and noise levels and check the position of the presenter and determine

if a presentation is taking place or not. In a wireless network a context interpreter

could be used to read the signal strengths from various wireless networks and provide

an approximation of location from that information.

All of the communication in the context toolkit is done by sending XML[3]

10

messages over HTTP[13]. Each of the elements in the system; widgets, aggrega-

tors, and interpreters; are able to run independently of one another and are accessed

through a simple HTTP server. This allows the components to be reused by multiple

context-aware applications.

The Context Toolkit has already been used for a variety of applications, in-

cluding an intelligent in-out board to manage the presence of staff and “Dummbo”,

an intelligent white board. These systems utilize iButtons[7] for context awareness.

When a user is present at the white board they insert their iButton into the re-

ceptacle. When two iButtons are docked a context event it triggered to indicate a

discussion is taking place and Dummbo begins to record the audio from the discussion

and store the writings on the board. The in-out board works by having participants

place their iButton in a receptacle while working at a location. This information is

then accessible over a variety of interfaces.

The Context Toolkit has very few limitations, however there are few that are

worth mentioning. The basic mode of communication is XML over HTTP. However,

there isn’t a standard encoding method specified for complex data types in the XML

messages. Also, because it is straight XML and not some other protocol, implementing

the system in a new programming language requires a significant amount of work

because of the need to write a new parser for the XML schema. Because the system

is tightly tied to HTTP, there are situations where the overhead of HTTP is significant

and an alternative protocol may be a better choice. In addition the system was not

designed to work in an ad hoc environment this limits the effectiveness in creating

truly pervasive spaces.

1.3 Overview of Work

Scarlet is designed to be the first logical step in developing a ubiquitous and

pervasive computing system. Rather than trying to address all of the aspects of

11

pervasive computing, it addresses only providing context information to applications.

Many of the shortcomings of other systems are addressed within Scarlet such as

communication via a platform and transport neutral protocol, execution in ad hoc

environments, and providing a flexible and easy interface for sensor designers to add

new sensors.

Chapter 2 describes the background of Scarlet, the goals of the system, and

provides some brief analysis of the system. Chapter 3 describes the components of

the Scarlet system and the required functions that each component must perform.

Chapter 4 discusses the initial implementation of the system and provides an analysis

of the performance and size of the system on several different architectures. Chap-

ter 5 provides examples of sample applications that utilize the Scarlet framework.

Chapter 6 concludes the document and provides information of how Scarlet may be

worked into a future system for pervasive computing research.

12

CHAPTER II

AN OVERVIEW OF SCARLET

Research in distributed computing is one of the most fundamental areas of

research in computer science. Simply put, it is research that examines how differ-

ent computing sources can communicate and utilize resources amongst themselves.

Within distributed computing there is also research on mobile computing. Mobile

computing takes distributed computing a step further and allows the computing

sources to move around both virtually in the network and physically.

Pervasive computing is another step beyond mobile computing. Whereas mo-

bile computing may have focused on only a few nodes that may be moving and inter-

acting with each other, pervasive computing seeks to weave computing into everything

and have it all work together. Satyanarayanan identifies four additional research areas

in pervasive computing beyond those of mobile and distributed computing[30]. Those

areas are:

• Effective use of smart spaces

• Invisibility

• Localized scalability

• Masking of uneven conditioning

Smart spaces are physical locations that are augmented with computational

resources to enhance the human experience. These resources may be sensors that

automatically detect the presence of particular people and their location or perhaps

measure a physical property of the room such as light or noise. Or the resources

may be computers and displays that augment the user experience by providing more

information to the users present in the room.

13

The Access Grid[16], developed by Argonne National Laboratory, is one exam-

ple of a smart space. Cameras in the room film what is currently going on in the room

and microphones record conversations in the room. This data is then sent to partic-

ipants at other sites, called nodes, that are participating in the conference. Ceiling

mounted projectors are able to display a large format display the video streams on

a wall to create the impression of being in the same room with participants at other

access grid nodes. There are some customized applications to allow for distributed

presentations and data visualization. A set of computers manages the interfaces to

the entire system and provides features such as highlighting the current speaker and

echo cancellation.

Effective use of such spaces means that handheld, notebook, and other forms

of computers automatically are able to interface with the environment. For instance,

if a presentation was taking place, a user watching the presentation with a note-

book computer would be able to automatically download the slides of the current

presentation and view them without any interaction from the presenter.

Another of the goals is invisibility, or allowing the users to interact with the

system without knowing it. Currently most human-computer interaction is invasive;

when a person is using a computer they are very aware of it as we must interact

with computers through methods other than those used to interact with people. In

a pervasive and ubiquitous system the user should not have to change their method

of interaction to interface with the computer systems in the room. This is especially

important because if everything in the room has a computer chip in it, changing the

method of interaction for each device can be quite time consuming and inconvenient.

The system should also be able to easily scale. For instance, the system may

work well when there are only three people present in a room, but how will the system

work when it is expanded for use in a shopping mall, airport, or stadium?

Finally, there is no way to guarantee the homogeneity of resources across all

14

spaces. At work a user may have a 100Mbps uplink to the Internet while at home he

may be limited to 128Kbps. The applications in the environment must know how to

handle both of these situations and adapt to them. Uneven conditioning is the result

of having differing numbers and quality of resources depending on location. In most

current applications, a drastic difference in the quality or availability of resources

will cause an application to cease functioning. For these applications to adapt some

form of user intervention is required. An example of such a situation is viewing video

over the Internet; when the user requests the video file they must also select what

speed of Internet connection they have. If for some reason the throughput from the

video server degrades, because of congestion or other reasons, the video may pause

and become choppy. To adapt the user must return and manually select the lower

quality stream, which has the drawback that when more bandwidth is available, it

won’t improve the quality of the video.

Designing a system to properly address all four of these issues is a daunting

task and is not the goal of Scarlet. Instead Scarlet takes a philosophy similar to that

of many of the command line utilities for Unix, do only your job and try to do it

very well. Then using these simple tools it is possible to build complex systems to

handle complex interactions. This also greatly simplifies the design and debugging of

the system.

Scarlet is designed to be a system for context awareness, similar those described

in chapter 1, building on the strengths and overcoming the weaknesses of such systems.

Eventually, it is hoped, that Scarlet will be just one component of a much larger,

vibrant, pervasive and ubiquitous computation environment. Scarlet focuses on the

following smaller issues which are highly related to the more general issues of pervasive

computing research.

• Cross-platform compatibility

15

• Scalability

• Modularity

• Extensibility

Each of these features will be described in brief in this chapter, with additional

information available with the discussion of the implementation of the system.

2.1 Cross-Platform Compatibility

For the consumer desktop market it is often assumed that the user is running

some version of Windows on an Intel or AMD processor. Making such an assumption

alienates some users, such as those who use a MacOS or Linux for their desktop

operating system, but their total number is generally under 5% of the total computing

population. In many vendors’ eyes this is an acceptable loss.

However, once we begin to interact with embedded and portable devices, the

story changes drastically. Common handheld computers run operating systems such

as PocketPC 2002, PalmOS, and even Linux. The processor on the systems vary,

coming from manufacturers such as Intel, Motorola, Texas Instruments, and Hitachi.

As a user gets more devices, the variety and number of possible combinations

increases at a frightening rate. Relying on a platform specific method for communi-

cation leaves the device in its own private world, unable to ever have the possibility

of communicating with other devices. This gives rise to the first major requirement

of Scarlet, it must be cross-platform.

To this point, most work on delivering a cross-platform solution has focused

on using the Java programming language, systems such as One.world[17] have chosen

this approach. However, such a solution is not truly cross-platform as users are

trapped in a world where all components must be written in Java because of the

16

reliance on Java specific methods such as object serialization to pass information from

one host to another. In addition, standardizing on a single programming language

may enforce certain programming paradigms, such object oriented in Java, upon

application developers. Thus, execution speed and choice of programming paradigms

are sacrificed for the perception of cross-platform compatibility.

This is why the core of Scarlet is not a single application, but rather a set of

methods and interactions. By specifying the communication methods for the system,

rather than the actual object model and internal structure of the system, we obtain

a much more flexible and cross-platform solution.

This concept is similar to the ideas used in the Open Grid Specification Ar-

chitecture (OGSA)[15], which forms the basis for Globus Toolkit 3.0[14]. Previous

versions of the Globus Toolkit were a collection of mostly unrelated executables glued

together by a large set of Unix shell scripts. There was no standard protocol for ser-

vice discover, invocation, or utilization. OGSA and Scarlet both utilize web services

technologies for communication. This includes the use of the Web Services Descrip-

tion Language (WSDL)[5] to describe the methods of a service and the Simple Object

Access Protocol (SOAP)[2] to actually utilize the system.

SOAP is an XML encoding that allows the preservation of complex data struc-

tures while passing them form application to application. Because SOAP has a stan-

dard encoding model, it doesn’t matter if the applications reside on drastically differ-

ent systems. As long as the data is properly sealed in a SOAP envelope each system

will be able to read and parse the information. SOAP also allows the naming of

various data elements in the envelope to help preserve the structure. In this sense the

information is stored in method similar to the tuples used by One.world. The exact

format of a tuple is specified by the WSDL document for that particular service and

operation.

WSDL is another XML language that allows for robust definitions of the meth-

17

ods, messages, and bindings provided by a web service. Within a WSDL document

are one or more service bindings. If a service is available over multiple protocols then

there will be a binding for each protocol. Each binding contains a port type that

defines the methods that are available through the binding. Each method defined

within the binding has a definition for its input and output messages. Each message

then has a formal definition for the components that make up the message. In this

hierarchy we can precisely define the input and output required by a service.

This use of SOAP for method invocation does cause Scarlet to incur additional

overhead when passing binary information, especially in streaming data such as video

or audio, due to the need to encode the data using base 64 encoding. However, the

flexibility provided by Scarlet allows location of the resources within the framework

and data transfer to take place through other out-of-bounds methods.

Furthermore, neither OGSA or Scarlet specify a particular programming lan-

guage that must be used to develop for the system. Although the reference implemen-

tations for OGSA and Scarlet are written in Java and Python, respectively, one could,

if so driven, write an implementation of the system in a different programming lan-

guage. In a similar vein, neither of the two systems specify a programming paradigm,

such as a procedural or object oriented, leaving the developer free to pursue solutions

appropriate to the task.

2.2 Scalability

There are two different aspects of scalability that Scarlet focuses on; one is

scalability in terms of computational power needed to run the system, the other is

scalability in terms of number of systems participating in the environment.

The driving force for cross-platform compatibility is also the driving force for

developing a scalable system. In a truly pervasive environment there is the need

to integrate information from a huge variety of providers. Some providers may be

18

running on a super computer, while others are on desktop computers, or handheld

devices. Still other context providers may be running on embedded systems, such as

an RCX brick[26].

Designing a system for the least common denominator would result in a pro-

found lack of features. While designing only for high end systems would result in

many devices being unable to take advantage of the infrastructure. Thus, Scarlet

takes a compromise between the two; it provides a moderate amount of functional-

ity inherent in the system, but allows lower end devices to not implement all of the

features of the architecture.

The other aspect of scalability, the number of devices that are using the in-

frastructure is heavily impacted by communication bottlenecks and single points of

failure. It is for this reason that Scarlet seeks to maximize peer-to-peer communication

wherever possible. Context providers that provide notification operations can future

reduce bandwidth usage as Scarlet has the flexibility to allow multicast dissemination

of context. However, this functionality is net yet fully implemented.

The only place that isn’t true peer-to-peer communication is in service discov-

ery. Discovery of new services within Scarlet is done in a method similar to that of

the Domain Name Service system[24] with a caching name server. In Scarlet resource

discovery is done via a two layer hierarchy. A node running Scarlet will have a local

registry running. This local registry is able to communicate with a domain registry

that serves a physical area, such as a room in a building. Under the Scarlet archi-

tecture, when a request for a resource is made, it is first sent to the local instance

of Scarlet. If the local instance has enough information to satisfy the request, it will

provide the information. If it does not have enough information, the query will pro-

ceed to a domain registry. The domain registry, which receives periodic updates from

all of the local registries in the area, will then search the list of resources and provide

a response. The local registry then caches the response from the domain registry for

19

future reference. From this point on communication is done directly with the con-

text provider that was discovered. This is very similar to how the World Wide Web

works. After the initial query is made, no further communication is necessary with

the domain name server until the record for that host expires.

2.3 Modularity

Another issue the comes up as a corollary to the system being cross-platform

and scalable is that of modularity. Modularity is the ability of the system to run

with only some of the parts of it enabled, or with different versions of common parts.

Scarlet’s architecture is designed from the ground up to be modular and flexible.

The Scarlet runtime is broken up into a variety of components which are de-

scribed in detail in chapter 3. The only component of the system that is required

for every instance of Scarlet is the base, also called the Scarlet runtime module. The

base contains the code needed to start up a HTTP SOAP listener and code to provide

notifications to consumers if no local registry is present. Additional components are

loaded at run time depending on the configuration of the system.

An example of where modularity is beneficial to the system is on a handheld

device. If the device does not provide context information to remote sources, then it

will not have any context providers and thus the runtime will not load the module

for providing context. This saves memory and CPU cycles for other tasks on the

handheld device.

Another example of a benefit of modularity is the ease with which components

may be swapped in and out for different implementations of the same component. It

may be the case that a system provides a context nugget to other context consumers,

but it may not have the need or ability to provide the full set of services. Thus, it is

possible to switch the standard context provider module for a more simplified one.

20

2.4 Extensibility

It would be näıve to think that Scarlet could, in its current form, satisfy all

of the possible requirements for a context aware system in a pervasive computing

environment. It is for this reason that Scarlet has extensibility at the very core of the

system.

The module architecture was designed to allow easy replacement of components

with more advanced or refined components. The communication protocols chosen are

bound to a specific platform, programming language, or even transport protocol.

Much of this extensibility comes from the use of SOAP[2] and WSDL[5] for

object access and object description. While currently most of these systems use

HTTP[13] for their transfer protocol, it is possible to use to use other transport and

invocation methods such as FTP[25], SMTP[20], BEEP[29] or another yet undevel-

oped protocol to transfer the requests from one host host to another. However, the

restriction still exists that both ends of the communication must understand the pro-

tocol. Both specifications also support the ability to add more data data encodings

at runtime through the use of XML schema imports.

Although the use of SOAP causes additional overhead over straight XML or

binary serialization techniques, it allows multiple programming languages to be used.

Whereas if Java binary serialization were it used, only Java programs could read the

objects, similar restrictions apply for C#’s XML serialization and Python’s object

pickling interfaces.

21

CHAPTER III

SCARLET COMPONENTS

Scarlet can be thought of as having four different interacting layers that work

together to provide context awareness. Like the OSI model for network communica-

tions, each layer in Scarlet communicates only with the layers above and below it and

has virtual communication with the same layer on remote hosts. A visualization of

this layered system can be seen in figure 3.1 with a summary description provided by

table 3.1.

At the highest level is the user who interacts with the system, this is not

considered to be a level exclusive to Scarlet, but rather is a necessary component for

any context aware system. The user interacts with underlying application through any

of a variety of operating system dependent methods, usually this is the windowed style

user interface that is prevalent on Windows, Unix and MacOS. At the next level is

the context aware application; this includes context providers, context consumers, and

context aggregators. These communicate with each other by first sending messages

through the API to the modules of Scarlet. Examples of applications at this level are

temperature sensors, location sensors, and the presentation program from the smart

classroom example.

Proceeding down the model, the next level is the modules. These modules pro-

vide the core functionality of the system for services such as provider and consumer

Table 3.1: Scarlet Level Descriptions

Level Role
Users Interact through operating system interfaces
Context Aware Apps Utilize or provide context information
Scarlet Modules Provide registration, subscription, and service location
Scarlet Base Communicate with other instances of Scarlet

22

Context Aware Apps

Users Users

Scarlet Modules

Scarlet Base Scarlet Base

Scarlet Modules

Context Aware Apps

SOAP Methods

Native Method Calls

Scarlet API Calls

OS User Interface

Figure 3.1: Levels in Scarlet

registration, service discovery, and security. The individual requirements and speci-

fications for each module are detailed later in this chapter. Modules of Scarlet may

interact directly with modules residing in the same instance, or may pass messages

to the Scarlet base to communication with other instances of Scarlet.

At the bottom level is the Scarlet base module. This module provides the glue

between all the modules and also has the responsibility for loading modules into the

system. The base module also includes the SOAP server that is used to communicate

with other instances of Scarlet.

3.1 Module Overview

As described in Chapter 2, Scarlet is based on a componentized architecture.

The base, also called the Scarlet runtime is the core component of the system. It loads

other components at runtime to configure the system appropriately. An overview of

all of the components can be seen in figure 3.2.

In addition to the components that are loaded at runtime by the Scarlet base,

23

Scarlet Base System

Optional Components

Required Components

Consumer SecuritySOAP

Local
Registry

Producer Domain
Registry

Listener
Consumer

API

Provider
API

Figure 3.2: Scarlet Components

there are two other components that exist outside the bounds of the system, the

consumer and provider APIs. These exist outside the core of the system to pro-

vide increased modularity and also because of the difficulties inherent in combining

program modules written in different programming languages. Having the APIs out-

side allows the creation of context providers and consumers that are written different

languages than the base of the system.

3.2 Scarlet Base

The Scarlet base is the core component that is required in all implementations

of Scarlet. It has the responsibility of performing initial configuration tasks, loading

the requested modules, and starting up a SOAP server for remote clients to connect

to. The SOAP server may be secured via TLS, but doesn’t need to be. For the default

SOAP over HTTP the server listens on TCP/IP port 2707, while running the SOAP

over HTTPS listens on port 2747.

The base is also responsible for forwarding all communication destined for a

24

module. Thus, if a module has a service that it wishes to provide to the entire Scarlet

environment, it must register that method through the base module.

In addition, the base module must provide several methods to external clients.

These methods allow clients to obtain information about the instance of Scarlet run-

ning at that address. Those methods are:

• base.version - returns a string containing an identifier for what version of Scar-

let the base is running. An example of such a string is “pyScarlet $Revision

1.14$ $Date: 2003/06/14 15:43:43 $”. This is intended to be an informa-

tional method, similar to HTTP server headers, and thus there is no specific

formatting requirement.

• base.modules - returns an array of the modules that are running on the current

system. On a system that has both context providers and consumers attached

the return value could be “[’base’, ’provider’, ’registry’, ’consumer’]”

Internally, the SOAP listener portion of the base must have a way to dynam-

ically register and unregister methods with the server. This is needed for context

providers as they may start up and shut down as they please. There is no restriction

on the connection handling execution model within the SOAP listener, however it is

recommended that it use either a multi-threaded or an asynchronous core to minimize

delay.

The individual implementation of the Scarlet base is free to implement more

functionality than this, however, all new methods that are accessible must have the

prefix base to indicate that they reside in the base module of the system. It also is

important to note that the base system should load some other modules as it can’t

do anything useful without them.

25

3.3 Local Registry

The local registry has the responsibility for responding to search requests from

local context consumers, storing information about local providers, and communica-

tion with the domain registries.

As discussed briefly in section 2.2, from a context consumer’s point of view, the

system is designed to act similarly to a caching name server. A context consumer can

make requests to the registry. If the registry does not have the information to fulfill

the request it will forward the request on to the domain registry. When a response

is received from the domain registry, it will be cached for a finite period of time. In

this method, if a particular context provider is frequently requested, it will not result

in frequent requests to the domain registry.

Figure 3.3 helps to illustrate how such requests are made. The messages are

numbered 1 to 4 in the order that they are made by the various components. Solid

lines are requests while dashed lines are responses. In addition, the diagram has been

simplified some by leaving out additional components such as the SOAP listener,

APIs, and consumer module. Initially the context consumer makes the request for a

service to the local registry. The local registry, which in this example does not have

knowledge of such a service, proceeds to query the domain registry via the message

labeled as 2. The domain registry is able to locate the service and passes back the

information about the service to the local registry. Finally the local registry passes

back the information to the client via the message marked as 4.

However, in another method similar to that of DNS, the local registry only

caches entries for remote services for a finite amount of time, usually five minutes.

This is because a pervasive network is usually far more dynamic than the networks

that DNS was designed to first serve. In our previous example, after the local registry

received information about the service, all future requests, such as a request for the

WSDL of the service or a query about the methods the service provides, will be

26

Local System

Local

Consumer
Context

Registry Registry
Domain

Remote System

1
2

3

4

Request

Response

Figure 3.3: Multi-level Registry Query

answered by the local registry via the cached information.

In addition, the local registry must support updating the domain registry with

information about the providers that are registered with the same base instance of

Scarlet. When a new provider registers with the instance of Scarlet, it is also entered

into the local registry. This allows Scarlet to run without a domain registry as requests

may be satisfied locally. Periodically, the local registry will upload the information

about the local providers to the list of domain registries. Through this method other

hosts are able to locate providers without the need for a global network view.

The local registry also plays a large role in giving Scarlet the ability to dynam-

ically configure itself with only minimal user interaction. This is done in conjunction

with the domain registry. An instance of the local registry also opens up a UDP

socket that listens for announcements from a domain registry. The local registry then

automatically adds domain registries it has heard from to the list of domain registries

and will update them on the next cycle. More about how this works to dynamically

configure Scarlet can be seen in section 3.4.

The local registry also has methods that it must implement. These methods

27

are designed to provide a stable base for all implementations of the Scarlet infrastruc-

ture. In addition to the standard arguments passed, each of these commands has an

additional option on whether or not to forward all requests to the domain registry.

The default is to forward to the domain registry only when no responses are available

from the local registry. Other options available are never forward and always forward

to the domain registry.

• reg.listServices - returns a multi-dimensional array that lists all services

present in the registry. Each entry in the array is a tuple containing the host-

name and port where the service can be reached at, name of the service, and a

globally unique key that is used to uniquely identify that instance of the service.

• reg.findServiceByName - this method works similar to listServices, with the

exception that it takes a single argument, the name of the service. If there is a

service with the given name in the registry, the information will be returned in

the same tuple format as that of reg.listServices.

• reg.findServiceByKey - each service is accessible by both its name and a key.

The key can be used to ensure that communication is always with the same

instance of a service. This method takes a key and returns information about

the service that has that key in the standard tuple format. More information

about the keys and how they work can be found in section 3.5.

• reg.findServiceByMethod - a single service may have multiple methods. This

method allows the consumer to specify the name of a method that they wish

to call, such as getTemperature, and will return all services that support that

method. Optionally the consumer can specify an additional method signature

information such as the input and output parameters to ensure that the proper

method is accessed.

28

• reg.listServiceMethods - in some cases it may be helpful to list all the meth-

ods that a particular service provides. Given a service name or key this method

returns an array with all of the methods of the provider. In the case of multiple

providers with same name running on different hosts, only the first set of results

is returned.

• reg.getWSDL - after locating a particular service, it may be necessary to do some

additional checking to ensure that it is the service that is desired. This method

returns the WSDL for a given service, thus allowing the client to ensure that it

is the desired service. The WSDL can also be used by advanced consumers to

automatically generate for a set of context providers at runtime. An example

of an advanced consumer can be seen in section 5.1.

• reg.listDomainRegistries - provides a listing of all domain registries that the

local registry knows about. This is intended primarily as a debugging function,

but may be useful for some consumers, such as service browsers. Unlike the other

methods listed, this method never gets propagated to the domain registry.

3.4 Domain Registry

The domain registry has the responsibility for collecting information about

the context providers that are registered at each local registry. This is a multi-step

process that is similar to the methodology that a hosts use to obtain an IP address

through DHCP[11, 12].

The domain registry must periodically make announcements to remote systems

on a specified port, in this case 2708. Each announcement consists of a single UDP/IP

packet that is sent to the broadcast address. Because of this, all instances of listeners

to port 2708 on each network the domain registry is located on will receive notification

of the domain registry’s existence. An announcement is a small string that contains

29

three parts separated by colons: the normal TCP port that the registry is listening

on, the TLS secured port the registry is listening on and the name of the registry. If

the domain registry is not running on a TLS port then the port will be listed as -1.

The domain registry does not need to be present on all systems in the envi-

ronment. In most cases a particular environment can function just fine with a single

domain registry. Multiple domain registries are helpful in cases where fail over sup-

port is required. In the case that a local registry has multiple domain registries in its

cache it should forward requests it is unable to fulfill to the domain registry that has

most recently sent an announcement. If no results are returned, it can try forwarding

the request on to another domain registry.

Methods provided by the domain registry have the prefix “domain” and are

generally the same as those provided by the local registry. The exception being

that the method listDomainRegistries has been replaces by listLocalRegistries

which returns all the local registries.

3.5 Provider Module

The provider module is only needed on systems that have context providers

and, as the name suggests, it has the support functions that are needed by context

providers. Currently there are two main functions that the provider module must

support; registration and unregistration of context providers and provision for notifi-

cation methods.

When a context provider wishes to register itself, it sends a SOAP request

to the Scarlet base that has information about the service. The request contains

information that can be used to uniquely identify a provider: the WSDL file that

describes that service, the address where the SOAP listener for the service is running,

and a private key that is chosen by the provider.

The WSDL file is used by Scarlet to get information about the context provider’s

30

name and the methods that are provided. In the future it may be used to provide in-

formation about alternative transports or the actual SOAP listener location, however

right now this is not the case. This decision was done because it allows for greater

dynamic configuration of the system. It makes it easier to create a simple provider

and install it another system with zero configuration.

The address should be passed in as a tuple that gives the hostname and the

port that the SOAP listener for the provider is active on. In most cases this should

be running on the localhost or over a Unix domain socket if the system supports it,

this provides some degree of integrity to the services as is prevents direct access from

remote hosts.

The private key is a string that is chosen by the application that is shared

with the provider module. It is important to note that this is not used for encryption.

Rather, the string is used to validate the request that is made to unregister the

provider with the Scarlet base.

When the module receives a request to register a provider, it must first ensure

that there is currently no other provider that is registered with the same name. If there

is a provider with the same name, the module then tries appending numbers to the

name until an unclaimed name is found. So if there are three providers registered that

are all called “TemperatureService”, they will be registered as “TemperatureService”,

“TemperatureService0”, and “TemperatureService1”.

After determining a name for the new provider, the module then generates a

reference key that is used to identify the service (this should not be confused with the

private key used for registration above). The reference key should be generated using

some method that will not easily generate the same value twice, using an MD5 hash

of the current time or a series of bytes from the system entropy pool both work quite

well. In this way, a consumer using a reference key can be sure of communication

with same provider instance.

31

Finally, the provider module must register the new provider with the local reg-

istry and the local SOAP listener. The methods are registered with the SOAP listener

in the format name.method. So if TemperatureService had a method called getTemp,

it would be made accessible through the base as TemperatureService.getTemp.

In addition each method is also registered under a special reference key method.

This is obtained by concatenating the string “key ” and the actual reference key.

Thus if the reference key for the service was “11aba5b58ad19dab9b64bcc20fd0eba7”,

method name key 11aba5b58ad19dab9b64bcc20fd0eba7.getTemp would also access

the same method.

After the context provider has registered itself with the provider module, it

must then register the functions with the local SOAP listener that was passed to the

provider module. In the case where an operation called getTemp was present in the

WSDL, an operation called getTemp must be registered with the local SOAP listener.

When a provider wishes to unregister itself a similar process is done in reverse.

First the provider module must check to see if the proper private key was passed, if it

wasn’t, it will not unregister the module. After the private key has been verified, the

provider will be removed from the local registry. After removing it from the registry

all the functions associated with the provider are removed from the SOAP listener.

At this point it is no longer possible to call the function in question. This also helps

by not allowing requests for methods that no longer exist.

In addition to the standard request-response method of obtaining context in-

formation from a remote service operation, the provider module also has support for

notification operations, which are mirrored off the WSDL methods for notification.

When a provider registers with the provider module, the module parses the

WSDL file and picks out which operations are request-response and which operations

are notification. Those operations which are request response have two operations

bound to the SOAP listener instead of just one, a subscribe and unsubscribe operation.

32

For example, if a service called TemperatureService had a notification operation

called notifyTemp that provides a notification stream when the temperature outside

changes and a request-response method called getTemp that returned the temperature

at that moment, the following operations would be registered with the SOAP listener:

• TemperatureService.notifyTemp.subscribe

• TemperatureService.notifyTemp.unsubscribe

• TemperatureService.getTemp

Unlike the request-response operations, no local methods need to be bound

to the provider’s individual SOAP listener as all data is sent to the remote clients

via the prov.publish operation on the provider module. Thus, it is conceivable to

create a context provider that does not utilize an instance of a local SOAP listener.

The addition of notifications to the Scarlet architecture has several advantages.

First of all, it allows us to create light weight context providers as a context provider

that has only notification methods requires no local SOAP listener. Secondly, it

allows use another method of distributing context information and ensuring that

the information is synchronized. When a context provider calls prov.publish the

information is sent to all the context consumers who are subscribed to the operation.

Thirdly, it allows for future expansion as it might one day be possible to use alternative

transport protocols such as multicast.

To support all of this functionality, the provider module must implement the

following methods:

• prov.register - registers a provider with the instance of the Scarlet SOAP

listener and adds an entry for the function into the local registry.

• prov.unregister - removes a provider from the Scarlet SOAP listener and the

local registry. Usually called right before a provider shuts down.

33

• prov.publish - allows a provider to send an update to a group of consumers

who are subscribed to a particular notification operation.

3.6 Consumer Module

The consumer module handles a variety of functions to assist context con-

sumers in their operations. The main methods that it handles are methods to register

and unregister services along with helper functions for the management of subscrip-

tions to context providers.

Consumers, like providers, are required to register before they start using the

system. This allows the system to allocate resources for computation before the

computation begins. This information is also needed for tracking what remote services

are currently in use and how they are being used.

After registration the consumer module serves as a gateway for finding services.

When a service is requested, the consumer module locates the service and returns

a handle to the service. While initial designs of the system had registry requests

coming directly from the context consumers, this method allows more adaptability in

the system, it also helps to eliminate superfluous service lookups.

When the client requests a particular operation from a context provider, the

handle is passed to the consumer module along with the name of the operation to

execute and any additional arguments that may be necessary for the context to be

obtained. The consumer module is responsible for issuing the SOAP request to the

appropriate module.

The consumer module also provides the support methods for subscription and

unsubscription of notification methods. This is primarily done to provide support

for multiple consumers on the same instance of Scarlet without having to replicate

the data multiple times. The number of consumers subscribed is kept via a reference

counting system, when there are no more consumers subscribed to a notification

34

operation, the local Scarlet base will send an unsubscription notice to the notification

source to stop sending updates.

This also allows for easy caching of values from a notification source. This

means that when there are multiple context consumers that are subscribed to the

same notification operation, no communication is necessary to the service that has

the operation to add additional context consumers.

• cons.register - registers a consumer with the local instance of the Scarlet.

• cons.unregister - detaches a consumer from the local instance of Scarlet.

• cons.subscribe - subscribes this consumer to a notification method from a

given provider. The specified provider will then send all future notification

context nuggets for that method to the consumer until an unsubscribe message

is sent.

• cons.unsubscribe - unsubscribes a consumer from a notification method of a

provider.

• cons.getValue - returns the value of a notification stream that the consumer

is currently subscribed to. This is done as a temporary measure until a more

appropriate method can be discovered.

Future expansion of this module will assist in resource adaptability and provide

helper functions for resource discovery. This will be done by creating specialized

registry query functions for consumers. These functions instead of returning a handle

to the remote Scarlet instance, will return an identifier, much like a file identifier,

that is used for future context requests. This will allow the modules to transparently

change over to a different context provider if the first one fails.

35

3.7 Security Module

Scarlet has a mechanism for security built into the system as it was easier to

build the system from the ground up with security concerns than to add them later.

Most of the security in Scarlet comes from one of two different mechanisms, access

control lists or transport layer security. The access control lists can be defined in

the system configuration. Using these lists it is possible to limit access to particular

methods or groups of methods within the system on an allow/deny basis. This pre-

vents unauthorized clients from accessing a context provider. Currently this is done

on an IP address basis.

The second form of security comes from the option to use transport layer

security[10] (also known as TLS or secure sockets layer). This is the same technology

that is used to secure e-commerce transactions. TLS is not always a viable option as it

requires the use of large numbers, typically handled by floating point units on CPUs,

however most handheld devices do not have floating point units and must resort to

much slower floating point unit emulation.

The security module is not accessible from outside of the Scarlet base, so it

registers no methods with the Scarlet base provider, instead all configuration must be

done through other methods, such as a configuration file. Because of this, the actual

functions of the security module are dependent on the implementation that is being

used.

3.8 Consumer API

Both the consumer and provider APIs are not listed as part of the Scarlet

base because they actually reside outside of the base module. These APIs reside on

systems where there are context providers or consumers and are intended to provide

an easy interface for developers to interface with the system by masking the intricacies

36

of calling the appropriate functions and processing SOAP queries.

In general the consumer API must support functionality to allow an application

to locate services, invoke services, and subscribe to updates from various services.

However, how this is done is best left up to the individual API, as over-mandating it

would make it difficult to implement for a variety of programming paradigms. More

information about the prototype API can be found in section 4.2.

3.9 Provider API

The provider API serves a similar purpose to that of the consumer API in

that it resides outside of the Scarlet base and shields the developer from a lot of

the intricacies of the system. However, the provider API needs to be slightly more

complex because a context provider need to have a simple SOAP server running if

if supports request-response methods. If provides only notification methods, then no

SOAP server is necessary.

Once again, the actual structure of the API will vary greatly depending on

the language that the API is designed for. More information about the prototype

provider API implementation can be found in section 4.3.

37

CHAPTER IV

IMPLEMENTATION DETAILS

Along with the specification of Scarlet, I have created an initial implementation

of Scarlet. This implementation has been shown to run on a wide variety of systems,

from the Sharp Zaurus PDA up to enterprise class servers from Sun Microsystems. It

is built on the following tool sets:

• Python 2.2

• PyXML 0.8.2

• SOAPpy 0.10.1

Python[34] is a cross-platform object oriented programming language that was

first developed by Guido von Rossum in 1991. While it does not yet enjoy the following

that languages such as Perl and Java do, it has several advantages that make it a

good choose for the development of Scarlet. Some of the advantages over Java were

described in a 2001 memo by Julian Taylor, an employee of Sun Microsystems and

a member of the team that develops the Java programming language[32]. In the

analysis Taylor points out that for a simple program, such as one that prints “Hello

World”, an implementation in Python requires less than 1/5th the memory of it’s

Java counterpart.

Another great advantage of Python is that it is truly an open source language.

One can go and download the source code for the language and the interpreter and

recompile it for new platforms. While this is also true for languages like Ruby, Perl,

and TCL, it is not true for the standard implementations Java and C#. This open-

ness has made Python available on most platforms where a suitable C development

chain exists. Ranging from highly interconnected supercomputers, such as the Earth

Simulator, down to handheld devices such as the Apple Newton and the Sharp Zaurus.

38

PyXML[27] is an implementation of various methods for reading and process-

ing XML[3] formatted files developed by the Python XML special interest group.

Unlike the standard XML parsers for Java and Perl, PyXML is written in C and

loaded into the Python interpreter at run time. This greatly increases the speed of

reading and manipulating XML documents while simultaneously decreasing memory

requirements.

SOAPpy[33] is an implementation of both SOAP server and SOAP client rou-

tines for Python. It is a pure Python package that is built on to of PyXML. As of

version 0.10.1 it is close to being fully compliant with the SOAP specification and has

shown sufficient ability to interact with other SOAP implementations.

4.1 Runtime Execution Model

The system begins by starting up an instance of the base module in the Python

interpreter. This module reads a configuration file that resides in the users home

directory. The configuration file tells the base what modules are supposed to be

loaded, the TCP/IP ports that services are running on, and how to log information

messages. Whenever a value is requested from the configuration file, a default value is

also provided. This allows the system to begin running under a default configuration

if there is no configuration file present.

After reading the configuration file, the base instantiates up the SOAP listener

thread. This is, itself, a threaded SOAP server, allowing multiple clients to connect

and make requests at the same time. The reference to the SOAP listener thread

is preserved in the base module to allow other modules to register the appropriate

services. The SOAP listener is the primary interface to Scarlet. By default it listens

for connections on all available network interfaces, but can be configured to only listen

on specified interfaces.

Next the system iterates over the list of modules that were specified in the

39

system configuration. For each module that is requested it attempts to load the

module. Because modules may use other modules, there is a hierarchy for the order

in which modules should be loaded. Modules are loaded in the following order: local

registry, provider, consumer, security, domain registry.

A diagram to help illustrate the system start up can be seen in figure 4.1. The

column on the left is the main thread, tasks that are in the column on the right can be

done in parallel. The key concept is that all methods are registered with the external

SOAP listener before the SOAP listener actually begins listening for requests. This

helps to ensure that methods are not available for external scarlet instance before the

appropriate objects are instantiated.

Each of the modules runs in a separate thread inside of the Python interpreter.

The system utilizes the global interpreter lock in Python and set of thread locks to

ensure that there are no race conditions with memory elements in the system. When

each thread is initialized it is registered back with the Scarlet base instance and then

registers the appropriate methods with the base SOAP listener instance. After all

threads have been initialized they are all started at the same time.

For the most part the threads sit idle, and thus consume very little resources.

Periodically each thread awakens to execute various functions, such as registry up-

dates, and check the system execution state. If the system has entered a shutdown

state, then each thread unregisters all of the methods from the base SOAP listener

and terminates all other activities.

The SOAP listener thread is an exception to the above statement. This thread

is constantly listening for new connections. When a connection is received a new

thread is spawned to handle the connection, this is made easy through the use of

the ThreadedSOAPServer module of SOAPpy. After the thread has been spawned,

the SOAP envelope will be opened and the appropriate method will be found in the

dictionary of registered methods. If there is no method registered, then a fault will

40

Registry Broadcast
Start Domain

Start SOAP Listener

Read Configuration

Load Modules

Local Registry

Methods
Register Base

Registry Listener
Start Domain

Register Registry

Methods
Register Provider

Methods
Register Consumer

Hooks
Initialize Security

Provider

Consumer

Security

Domain Registry Methods
Register Domain

Init SOAP Listener

Methods

Figure 4.1: Scarlet Start Up Procedure

41

be returned to the requesting client. If the method is present, the apply function will

be used to invoke the method and pass the appropriate keyword arguments.

Because of the way that Python is structured and the fact that everything is

an object within Python, methods of context providers can be activated as a regular

method even though they reside in a different memory space and a SOAP request

must be made to accomplish the task. If we examine how a process actually registers

in the Python implementation we see how this is possible.

4.2 Provider API Implementation

The provider API is the more complex of the two APIs as it needs to hide

some of the issues with creating a SOAP server and locating an appropriate port for

the server to run on. It is an object oriented API for Python and starts by having

the application create an instance of the ProviderAPI object.

The creation of the ProviderAPI object also starts up a simple SOAP server.

The server listens only on the loopback interface and selects a port number from the

ports that are free, starting with port 40000.

The next step is that the context provider must register itself with the Scarlet

base instance. This is done by passing in the filename where the WSDL file can be

found to the register function of the API. The provider API does no checking to

make sure the WSDL file is correct at this time, instead it reads the file and passes it

as a string to the provider module of the Scarlet base for registration of the functions.

After this point, the context provider registers the appropriate functions that

it supports by calling registerFunction and passing in a reference to the function

and an optional function name. If the function name is not in the list of supported

functions from the WSDL, then the registration cannot take place. This is done to

help maintain naming consistency. It’s important to note that only the operations that

are of the request-response type need to be registered via this method as notification

42

methods are handled via the provider module within the Scarlet base.

The final thing that needs to be done is to start up the SOAP listener instance.

This will allow the Scarlet base to forward requests through to the context provider

and obtain context information. There are two different options for execution in this

case. The first option is to use a listener that runs a separate thread by calling

the serve thread command. This allows the provider to continue and do any other

functions that are needed without worrying about how to handle the listener. The

second is to call the serve forever command. This can be done when the provider

has no background execution that is necessary for proper execution.

From this point on the provider is free to execute as it normally would as all

the interfaces have been initialized. When a remote client requests an operation that

the provider has, the function that was registered via the registerFunction system

call will be executed.

If the provider has any notification methods that are supported by it, pub-

lishing to the methods is a simple matter of calling the publish method of the

ProviderAPI object and passing in the name of the operation to publish to and

the new value. The provider module within the Scarlet base will automatically take

care of the rest including managing subscription and forwarding the information on

to the subscribed consumers.

Before a program terminates, the final thing that it must do is call unregister.

This tells the Scarlet base instance that the provider is no longer executing and that

it should unregister all of the methods. The code for a very simple provider that

serves as a hit counter is shown in figure 4.2. The WSDL is not shown, but it would

include a single operation called count.

43

01: from scarlet.api.provider import *

02: ctr = 0

03: def count():

04: global ctr

05: ctr = ctr + 1

06: return ctr

07:

08: if __name__ == "__main__":

09: provObj = ProviderAPI()

10:

11: provObj.register(’simpleCounter.wsdl’)

12: provObj.registerFunction(count)

13: try:

14: provObj.serve_forever()

15: except KeyboardInterrupt:

16: pass

17: provObj.unregister()

Figure 4.2: Simple Counter Provider

4.3 Consumer API Implementation

The consumer API is simpler than the provider API because of the fact that

consumers lack the need to run a SOAP provider. Like the provider API, the core of

the consumer API is the ConsumerAPI object which represents the connection to the

Scarlet base instance. After initializing the object the consumer calls the register

function to register itself with the base. After this the program may execute however

it wishes. It can subscribe to a notification operation by using the subscribe method,

or it can locate services by using the findServiceByName and findServiceByMethod

operations. Updates to notification methods are obtained by calling getValue and

passing in the service name and operation name that the consumer is subscribed to.

Upon finishing the consumer should call unregister to ensure that all resources are

cleaned up.

An example of a simple context consumer is shown in figure 4.3. This context

consumer connects to the local Scarlet instance and prints out the current value from

the simple counter service that was shown in the last section.

44

01: from scarlet.api.consumer import *

02: consObj = ConsumerAPI()

03: consObj.register()

04: service = consObj.findServiceByMethod(’count’)

05. print "Counter Value is: %d" % (service.count())

06. consObj.unregister()

Figure 4.3: Simple Counter Consumer

Table 4.1: Scarlet Memory Consumption on Sharp Zaurus SL-5500

Components Memory
Base 2816KB
Base, Registry, Consumer 2912KB
Base, Registry, Consumer, Provider 2964KB
Base, Registry, Consumer, Provider, Domain 3204KB

4.4 Performance Details

Performance testing was conducted on several systems to ensure that the ini-

tial implementation met the original goals for the system. In each case the system

was running a variant of Linux and the memory consumption for the processes were

measured by examining /proc/X/status where X was process ID of Scarlet.

The Sharp Zaurus SL-5500 was used to test performance on handheld sys-

tems. The operating system on the devices was changed from the factory original

to OpenZaurus 3.2[21] to provide more flexibility for development and more options

for memory control. The devices feature a 206MHz Intel StrongARM processor, 16

megs of flash ram and 64 megs of general purpose ram. The general purpose ram was

split, providing 24 megabytes for additional storage, and 40 megabytes for program

execution. The memory consumption of various Scarlet configurations can be seen in

figure 4.1.

For desktop class computers, an AMD Athlon running RedHat Linux 7.3 and

Linux kernel 2.4.20 was used. The machine has a 700MHz processor and 768MB of

45

Table 4.2: Scarlet Memory Consumption on AMD Athlon Linux

Components Memory
Base 5112KB
Base, Registry, Consumer 5176KB
Base, Registry, Consumer, Provider 5240KB
Base, Registry, Consumer, Provider, Domain 5600KB

ram for program execution. The memory consumption for the different configurations

can be seen in figure 4.2.

There are several interesting things to note from these figures. The most obvi-

ous thing is that memory consumption is significantly smaller on the handheld than

on the desktop system. Although the Python executable is larger on the handheld,

the memory footprint ends up being smaller because it has fewer shared libraries that

must be loaded at run time.

Another thing of note is that adding more components takes much less memory

than originally thought. This is largely because of the fact that new modules run in

threads rather than in processes. The use of threads with a common parent allows

each module to share the code for the Python interpreter, this is highlighted by the

relative small increase in code size for each additional module.

Even though I was rather pleased with the overall memory consumption of

the base system, on the handheld it does show that memory consumption may soon

become an issue. The main reason is because each context provider runs in its own

address space, and thus has its own instance of the Python interpreter. While this

would be a necessity on a system where the base is written in a different language,

it shows that there is merit to embarking on work that allows the base to load the

context providers directly into the same Python interpreter.

However, this does not solve the problem of the memory consumption with

context consumers, as each consumer must also have an instance of the Python in-

46

terpreter. Because these are separate applications that also have other functionality,

it makes sense to leave these outside of the main Scarlet system. Thus, if there was a

trade-off decision to be made about whether to develop an enhanced client or provider

API, the preference should probably go to the client.

4.5 Other Implementations

After the initial Python implementation, work has begun to allow other lan-

guages to interact with Scarlet through the consumer and provider APIs. At this time

there are Scarlet API libraries for Perl, Java, and C++. Preliminary work has started

on a C# API using the Mono runtime of the Common Language Infrastructure. In

addition to the API libraries, there has been preliminary work on a C language im-

plementation of the Scarlet base. This implementation is targeted at smaller systems

such as handheld computers.

47

CHAPTER V

SCARLET APPLICATIONS

The easiest way to demonstrate some of the properties of the system is to show

a set of sample applications that utilize the Scarlet framework. A wide variety of

applications have been developed for the system, this chapter will describe three such

applications, the service browser, wireless signal strength monitor, and a television

assistant. Scarce hardware resources have limited the ability to create a wider variety

of context aware services. Section 5.4 details how some of the examples from other

context aware systems could be implemented using Scarlet.

5.1 Graphical Service Browser

This tool is not meant to be the primary method of interacting with Scarlet,

but rather is designed to be a development and administration tool. There are two

versions of this program, one was written in Python and utilizes the QT widget toolkit

for support on Unix, MacOS X and handheld devices such as the Sharp Zaurus. The

other is a more advanced tool written in Python and uses the wxWindows widget

toolkit for support under Windows, Unix, and MacOS X.

A screenshot of the QT based browser running on the Sharp Zaurus can be

seen in figure 5.1. The user interface is intentionally minimal so as better function on

the 240x320 display on most current handheld devices. When the application starts

it attempts to contact a local instance of Scarlet to locate domain registries that have

sent announcements to the device. The user then selects a registry and is presented

with a list of all context providers the registry currently has knowledge of. Selecting

a provider results in obtaining a list of operations for the service, and selecting an

operation will allow the user to obtain context information by querying the particular

operation from the provider.

48

Figure 5.1: Handheld Graphical Service Browser

The wxWindows based service browser, a joint project with Andrew Makhanov,

functions in a similar manner, but it is tuned for desktop computers that provide a

large display area. A screenshot of the browser can be seen in figure 5.2.

The basic functionality of the program is similar to that of the browser for

handheld devices, with a few noticeable extensions such as fetching and processing of

the WSDL file for the service. This allows the program to dynamically build more

complex user interfaces specially suited for each context provider. This is especially

helpful for providers that require additional information before they can provide con-

text. For instance the temperature context provider requires the zip code of the

location in order to return the context information. The WSDL file for the service

indicates that the input message requires a string to be passed, so the browser auto-

matically builds a user interface with a field to enter a zip code. For the return value,

the different elements are automatically parsed and labeled according to the WSDL

description.

49

Figure 5.2: Desktop Graphical Service Browser

5.2 Wireless Strength Monitor

On traditional wired networks, such as ethernet, one can reasonably assume

that slow network performance is the result of network congestion. Solutions to help

avert congestion related issues usually involve an upgrade to the physical network

medium, either by utilizing a higher speed network or by installing network switches

instead of standard hubs.

In wireless networks the same assumption cannot be made. Most wireless

computer networks operate in the unlicensed 2.4GHz or 5GHz ISM bands. As a

result of the unlicensed nature of the spectrum, there are a large variety of devices that

may be utilization the spectrum while not participating in the network, thus causing

interference. Thus, we see how in a wireless network, slow network performance may

not be caused by network congestion, but may instead be the result of interference

50

from a high end cordless telephone or a microwave oven. Distance and location also

play more of a role than on wired networks as the physical terrain may act to block

the wireless signals and degrade performance.

One method that can be used to help diagnose poor network performance is

to monitor the status provided by the wireless network interface card. Within Linux

this can be done by examining the contents of /proc/net/wireless. This file is not

a normal file as it resides in the Linux proc file system. It’s contents are continually

updated and it doesn’t take up room on the disk. Instead, it acts as standard kernel

interface to some of the internal functions of the wireless network cards.

This was one of the first context providers developed for Scarlet and the code

for the provider ends up being remarkably compact and can be seen in figure 5.3.

Within this program, a large amount of the code is dedicated to parsing the data

read in from the file while all the code needed to interface with Scarlet is contained

in lines 22 to 31.

Lines 1 and 2 are commands that inform Python what modules this program

is using. The system library, sys, is needed to have the provider exit in the case of an

error, and the Scarlet provider API, scarlet.api.provider is needed to initialize

communication. Lines 4 through 13 are the code that actually gets the wireless signal

strength. In Linux the state of the current wireless connection can be found on the

third line of /proc/net/wireless. Line 6 tells the program to always read from the

beginning of the file, while lines 7-12 parse the input to return the interface name,

signal quality (a function of strength and noise), signal strength, and signal noise.

Line 13 then returns all the information back to the SOAP provider.

The main portion of the program begins on line 15. Initially an attempt is

made to open /proc/net/wireless on lines 16-20. If the file does not exist, the

provider prints an error message and exits. On line 22-25 is the initialization for the

context provider. The WSDL file WirelessStrengthService.wsdl is used to provide

51

01: import sys

02: from scarlet.api.provider import *

03:

04: def getSignalStrength():

05: global wirelessFile

06: wirelessFile.seek(0)

07: lines = wirelessFile.read().splitlines()

08: useful = lines[2].split()

09: interface = useful[0][:-1]

10: quality = useful[2][:-1]

11: strength = useful[3][:-1]

12: noise = useful[4][:-1]

13: return (interface, quality, strength, noise)

14:

15: if __name__ == "__main__":

16: try:

17: wirelessFile = open("/proc/net/wireless", "r")

18: except:

19: print "Unable to open /proc/net/wireless"

20: sys.exit()

21:

22: provObj = ProviderAPI()

23:

24: print provObj.register(’WirelessStrengthService.wsdl’)

25: print provObj.registerFunction(getSignalStrength)

26: try:

27: print provObj.serve_forever()

28: except KeyboardInterrupt:

29: pass

30: wirelessFile.close()

31: print provObj.unregister()

Figure 5.3: Wireless Strength Provider Code

52

information about the service to the Scarlet base. The method getSignalStrength,

defined on lines 4-13, is then registered as a remotely accessible method on line 25.

Finally, lines 26-29 tell the program to run forever unless it stopped with keyboard

interrupt and lines 30-31 close all remaining files and remove the system from the

Scarlet base.

The WSDL file for the service can be seen in figure 5.4. It is a fully standards

compliant WSDL file. Although it may seem quite complex, a quick analysis reveals

that it is much simpler than first glance. The first seven lines of the program establish

the appropriate name spaces for the service description, such lines are required for

any WSDL file. Line 8 declares a message called getSignalRequest with constituent

parts, similar to declaring a function as taking the void parameter in C. Lines 9-

14 create another message called getSignalResponse that returns four parameters,

one string and three floating point numbers. Lines 15-19 are the declaration for the

operations, in this case only one operation is supported, getSignalStrength. The

input and output messages are specified to be those that were just declared. Lines

21-36 provide the binding for the operation to SOAP, specifically SOAP over HTTP.

These lines will be very similar for every service that runs SOAP over HTTP. Finally,

lines 37-44 provide the definitions of the service and tie everything together.

5.3 Television Assistant

Almost anyone who owns or has used a personal video recorder, such as a

TiVo, will be quick to explain how such devices have forever changed the way that

television is viewed. These devices usually have features like an interactive program

guide, the ability to pause live television, commercial skipping, remote scheduling of

programs, and even use previous viewing habits to make recommendations of other

programs that the viewer may enjoy.

With the advent of inexpensive television tuner add-on cards, the desktop com-

53

01: <?xml version="1.0"?>

02: <definitions name="WirelessStrengthService"

03: targetNamespace="http://patrick.wagstrom.net/research/scarlet/WirelessStrengthService.wsdl"

04: xmlns:tns="http://patrick.wagstrom.net/research/scarlet/WirelessStrengthService.wsdl"

05: xmlns:xsd="http://www.w3.org/2001/XMLSchema"

06: xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

07: xmlns="http://schemas.xmlsoap.org/wsdl/">

08: <message name="getSignalRequest" />

09: <message name="getSignalResponse">

10: <part name="interface" type="xsd:string"/>

11: <part name="quality" type="xsd:float"/>

12: <part name="strength" type="xsd:float"/>

13: <part name="noise" type="xsd:float"/>

14: </message>

15: <portType name="SignalStrengthPortType">

16: <operation name="getSignalStrength">

17: <input message="tns:getSignalRequest"/>

18: <output message="tns:getSignalResponse"/>

19: </operation>

20: </portType>

21: <binding name="SignalStrengthBinding" type="tns:SignalStrengthPortType">

22: <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

23: <operation name="getSignalStrength">

24: <soap:operation soapAction=""/>

25: <input>

26: <soap:body use="encoded"

27: namespace="urn:scarlet-WirelessStrengthService"

28: encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

29: </input>

30: <output>

31: <soap:body use="encoded"

32: namespace="urn:scarlet-WirelessStrengthService"

33: encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

34: </output>

35: </operation>

36: </binding>

37: <service name="WirelessStrengthService">

38: <documentation>

39: Returns the strength of the wireless signal for the host

40: </documentation>

41: <port name="SignalStrengthPort" binding="tns:SignalStrengthBinding">

42: <soap:address location="scarlet://localhost:2707/"/>

43: </port>

44: </service>

45: </definitions>

Figure 5.4: Wireless Strength Provider WSDL

54

puter is now a useful and viable platform to replicate the functionality of such devices.

MythTV[28] is an open source project that provides standard PVR functionality and

more to computers running Linux.

The television assistant program is an application that runs on a handheld de-

vice, such as a Sharp Zaurus, that uses context information from MythTV to enhance

the overall viewing experience. The most basic functionality is that of an enhanced

remote control that works over radio frequencies rather than traditional infrared com-

munications. This removes the requirement for line of sight to control the television.

Also, this allows customized controls to be developed and utilized via the touch screen

on the handheld.

The next set of functionality is that of a program guide. The application is

able to request the listings of all available currently showing programs from MythTV

and display program guide information without the alter the viewing oft the current

program by bringing up an on screen display. This can be helpful if one person in a

group wants to see what else is on television without disturbing the entire group.

The final functionality, and perhaps the most useful, is the ability to view

segments of previous recorded programs on the handheld. This is done by instanti-

ating an instance of a VideoLan[22] server on the computer running MythTV and a

VideoLan client on the handheld. This mode is still fairly limited due to a variety of

factors, the primary two being the processing power of the handheld and the available

bandwidth in the wireless network.

Standard NTSC television is captured at a resolution 720x480 pixels at 30

frames a second. At this resolution, a full quality MPEG-2 encoded video stream

will produce about 15 megabits of data a second, which is higher the the 11 Mbps

theoretical max of 802.11b wireless networks. This results in the need to either save

the programs at a lower quality or transcode the programs to lower quality while

sending to the handheld device. Unfortunately, in most cases it is undesirable to save

55

Figure 5.5: Television Assistant Application

at a lower quality and neither MythTV or VideoLan support transcoding on the fly.

Thus, while it is currently possible to watch the recorded programs on the

handheld they must be manually transcoded to achieve the desired parameters. The

current parameters that have been found to be most successful are 320x240 resolution

and 10 frames per second. A screenshot of the application can be seen in figure 5.5.

5.4 Other System Examples

Unfortunately, the lack of hardware resources made it impossible to demon-

strate conclusively that Scarlet can handle all of the same sample applications as

RCSM, One.World and Context Toolkit. This section intends to describe how some

of those sample applications would be implemented under Scarlet.

5.4.1 Smart Classroom. This is the example that was first presented in

Section 1.2.1. The smart classroom’s presentation scenario would most likely utilize

56

three context providers and one context aggregator. The first context provider would

be on the presenter’s handheld device and would be a location context provider. The

second provider could be anywhere in the environment and it would monitor the

state of the lights in the room, this sort of context provider has already been created

through an interface with an RCX brick. The third context provider would be a noise

sensor, it too could be located anywhere in the room.

The presenter would also have a context aggregator built into the presentation

program. It would monitor the three context providers and would provide a new

notification stream when all of the conditions are met. The students watching the

presentation would then subscribe to the notification stream and receive an update

about the location where the slides may be obtained from once the presentation has

begun.

There is nothing in this scenario that Scarlet cannot theoretically do. There

are some challenges to making this scenario a reality though. The main one is dealing

with locating information, a task that most context aware projects are struggling with.

Current techniques allow a rough location to be obtained by looking at what wireless

access point is being used, however this scenario requires a higher resolution than such

a method provides. Until a higher resolution wireless location method is available,

Scarlet, and most other context aware systems, will have difficulty implementing the

entirety of this service

5.4.2 Smart White Board. The Smart White Board from Context Toolkit

is an application that can currently be done with little difficulty. Like the smart

classroom, the smart white board relies on location information, specifically it has to

know that there are multiple users interacting with it before it starts recording. The

primary difference is the use of iButtons for physical location information.

In the Scarlet implementation there would be a pair of context providers that

57

are connected to the receptacles for the iButtons. Each of these would export a

notification method that provides information about the button that is currently in

the receptacle and when it is removed. A context consumer could subscribe to this

information and when all both context providers indicate the presence of a user, would

activate a camera and microphone through operating system native methods.

When a user leaves, by removing their iButton, the notification would be

received by the context consumer which would stop recording the conversation. At

this point it would save a copy of the film and make it available for the people who

just participated in the discussion.

58

CHAPTER VI

CONCLUSION AND FUTURE WORK

Scarlet was designed to be a cross-platform, scalable, modular and extensi-

ble solution for context aware computing. This document began by first providing

a brief overview of some of the current technologies available for context-aware com-

puting and their advantages and disadvantages. It then outlined the requirements for

a pervasive computing infrastructure and highlighted what aspects of such an infras-

tructure Scarlet fulfills. Based on the requirements for pervasive computing, the four

primary design requirements for Scarlet were then described in detail.

Chapter 3 described the components of the system and showed that by using

a transport and programming language independent message passing protocol, much

of the cross-platform requirement can be satisfied. This chapter also described in

detail the modularity of the system and described how modules could be replaced

with different ones depending on requirements. The registry is a module of Scarlet

that exemplifies this; it is easy to drop in replacement registry modules to provide

better support for handheld devices or devices that don’t need to support the full

range of functionality.

Chapter 4 provided information about the initial implementation of Scarlet

in Python. The memory profile showed that although Scarlet has moderate memory

requirements, primarily due to the use of Python and its associated interpreter, they

are note beyond the range of current generation handheld computers. Chapter 5

helped to reinforce the scalability issue by providing real examples of applications

that run on both handheld and desktop computer systems.

Table 6.1 provides a comparison of One.world, Context Toolkit, RCSM and

Scarlet on several key issues; communication, programming language, memory con-

sumption and extensibility. Communication refers to the primary method of commu-

59

Table 6.1: Pervasive Computing Comparison

Memory
Communication Language Consumption Extensibility

One.world Java Serialization Java High Moderate
Context Toolkit XML over HTTP Any Moderate Moderate
RCSM Proprietary Any Low Low
Scarlet SOAP over HTTP Any Moderate High

nication used between components in the system. One.world uses Java serialization

to communicate between components of the system, Context Toolkit uses XML frag-

ments over HTTP, RCSM uses a proprietary CORBA like protocol called R-GIOP,

while Scarlet uses SOAP over HTTP currently, but is easily extensible to other pro-

tocols.

Programming language refers to what languages may be used to interface with

the system. One.world requires the use of Java because it uses Java object serializa-

tion for communication. Each of the other systems operates with any programming

language, but some work may be required to create the bindings for the language. In-

terfacing with Context Toolkit only requires processing XML and transmitting it over

HTTP, the existence of XML parsers and HTTP libraries for many languages greatly

simplifies this task. Scarlet is slightly more complex as it requires a SOAP interpreter

in addition to XML parser. RCSM is the most complex as it requires modification of

the CA-IDL compiler to provide stubs for new programming languages.

The next comparison point is memory consumption of the system. One.world

has fairly high memory requirements due to the need for a Java run-time environment

in the system. There are moderate memory requirements for Context Toolkit and

Scarlet, primarily this is due to the need to process XML data and send it using

HTTP. RCSM has the lowest resource consumption because it is coded in C and has

some of the functionality off-loaded to a customized FPGA chip.

60

The final comparison criteria is related to the overall extensibility of the sys-

tem, both in terms of the ability to add new functionality, such as support for new

protocols, and the ability to add new sensors and context providers to the system.

One.world is moderately easy to extend because new programs need only be pro-

grammed in Java and utilize the packages provided by the framework. However,

reading actual data from sensors in One.world can be a bit tricky because of the

virtualization and restrictions imposed by running a Java Virtual Machine. Context

Toolkit makes it fairly easy to add a new context provider to the system, but the user

must write the code to parse the XML fragments that are passed. Both of these sys-

tems require modification to both provider and consumer sides of the system for new

providers to function. RCSM has the least extensibility because adding a new context

provider involves modifications to the CA-IDL compiler, the creation of new bindings,

and possible modifications to R-GIOP. Scarlet can be easily extended thanks to its

modular architecture. By using the APIs for context providers and context consumers

the creation of new context provider takes only a few lines of code and clients can

be created that dynamically invoke new remote providers. There is no modification

required anywhere in the architecture for a new provider to be deployed.

Based on this information we see that the only category of the four comparisons

where Scarlet is not the optimal solution is memory consumption. However, this is

due primarily to the fact that Scarlet is written in Python which has a high memory

footprint due to its interpreted nature.

6.1 Future Work

As stated at the beginning of this thesis, Scarlet is not meant to be used in a

vacuum. It is meant to be the first component of a larger system that for pervasive

computing. There are still many components that need to be developed for this vision

to become a reality. Some of these components are an efficient system for remote data

61

access and a system to provide more flexibility inherent to the system.

There also is work that can be done within Scarlet to improve the system.

Some of it is simple implementation issues with cleaning up the code, while others

present larger issues that are necessary to make Scarlet a robust environment, such

as fault tolerance and adaptability.

As mentioned in section 4.4, there are steps that should be taken to reduce the

memory usage of Scarlet. One easy step to do this is to allow the Scarlet base to load

providers internal to the system, and thus avoid instantiating another instance of the

Python interpreter. Another step is to address the efficiency of the consumer API

and develop an optimized library for more efficient languages like C. This would allow

the creation of more compact producers and consumers and would be very helpful for

handheld and embedded devices.

Interoperability with more toolkits should be ensured also. Currently the

Scarlet runtime follows all of the standards of the W3C as of it’s creation, but that

does not guarantee interoperability with other systems as there are many SOAP

implementations that are not fully compatible with the SOAP standard[6].

Finally there should be wider vision beyond Scarlet, that towards a complete

pervasive infrastructure. A good place to look next is toward uneven conditioning and

allowing services to automatically adapt to changing conditions. Together with Scarlet

such a system can make great strides toward recognizing a pervasive infrastructure.

62

BIBLIOGRAPHY

[1] Larry Arnstein, Robert Grimm, Chia-Yang Hung, Jong Hee Kang, Anthony
LaMarca, Gary Look, Stefan B. Sigurdsson, Jing Su, and Gaetano Bor-
riello. Systems support for ubiquitous computing: A case study of two
implementations of labscape. In Proceedings of the 2002 International Con-
ference on Pervasive Computing, Zurich, Switzerland, August 2002.

[2] Don Box, Davin Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,
Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple object
access protocol. http://www.w3.org/TR/SOAP, May 2000. visited June
12th, 2003.

[3] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible
markup language 1.0. http://www.w3.org/TR/REC-xml, October 2000.
visited June 2nd, 2003.

[4] Peter J. Brown, John D. Bovey, and Xian Chen. Context-aware applications:
From the laboratory to the marketplace. IEEE Personal Communications,
2(1):1–9, March 1997.

[5] Erik Christensen, Fancisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Web services description language. http://www.w3.org/TR/wsdl, March
2001. visited June 12th, 2003.

[6] Robert Cunnings. SOAP builders interoperability lab. White Mesa Software.
http://www.whitemesa.com/interop.htm, June 2003. visited June 12th,
2003.

[7] Dallas Semiconductor. iButton - contact memory, digital temperature data log-
gers, java-powered and secure ecash tokens. http://www.ibutton.com/.
vistied June 20th, 2003.

[8] Anind K. Dey. Providing Archtecture Support for Building Context-Aware Applica-
tions. PhD thesis, College of Computing, Georgia Institute of Technology,
December 2000.

[9] Anind K. Dey and Gregory D. Abowd. The context toolkit: Aiding the develop-
ment of context-aware applications. In Workshop on Software Engineering
for Wearable and Pervasive Computing, Limerick, Ireland, June 2000.

[10] Tim Dierks and Christopher Allen. IETF RFC 2246: The TLS protocol.
ftp://ftp.rfc-editor.org/in-notes/rfc2246.txt, January 1999. visited June
16th, 2003.

63

[11] Ralph Droms. IETF RFC 1541: Dynamic host configuration protocol.
ftp://ftp.rfc-editor.org/in-notes/rfc1531.txt, October 1993. visited June
16th, 2003.

[12] Ralph Droms. IETF RFC 2131: Dynamic host configuration protocol.
ftp://ftp.rfc-editor.org/in-notes/rfc2131.txt, March 1997. visited June
16th, 2003.

[13] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul
Leach, and Tim Berners-Lee. IETF RFC 2616: Hypertext transfer proto-
col – HTTP/1.1. ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt, June 1999.
visited June 12th, 2003.

[14] Ian Foster, Carl Kesselman, Jeffrey Nick, and Steve Tuecke. Grid services for
distributed system integration. Computer, 35(6), June 2002.

[15] Ian Foster, Carl Kesselman, Jeffrey Nick, and Steve Tuecke. The physiology
of the grid: An open grid services architecture for distributed systems
information. In Global Grid Forum 5, Edinburgh, Scotland, June 2002.
Global Grid Forum.

[16] Futures Lab, Mathematics and Computer Science Division, Argonne National
Laboratory. Access grid. http://www.accessgrid.org/, June 2003. visited
June 10th, 2003.

[17] Robert Grimm. System Support for Pervasive Applications. PhD thesis, University
of Washington, December 2002.

[18] Robert Grimm, Tom Anderson, Brian Bershad, and David Wetherall. A sys-
tem architecture for pervasive computing. In Proceedings of the 9th ACM
SIGOPS European Workshop, pages 177–182, Kolding, Denmark, Septem-
ber 2000.

[19] Robert Grimm, Janet Davis, Eric Lemar, Adam MacBeth, Steven Swanson,
Steven Gribble, Tom Anderson, Brian Bershad, Gaetano Borriello, and
David Wetherall. Programming for pervasive computing environments.
Technical Report UW-CSE-01-06-01, University of Washington, Depart-
ment of Computer Science and Engineering, June 2001.

[20] John Klensin et al. IETF RFC 2821: Simple mail transfer protocol. ftp://ftp.rfc-
editor.org/in-notes/rfc2821.txt, April 2001. visited June 17th, 2003.

[21] Chris Larson. OpenZaurus. http://www.openzaurus.org/, May 2003. visited June
1st, 2003.

64

[22] Simon Latapie. VideoLan. http://www.videolan.org/, July 2003. visited July 1st,
2003.

[23] MapQuest.Com, Inc. Mapquest. http://www.mapquest.com/, June 2003. visite
June 29th, 2003.

[24] Paul Mockapetris. IETF RFC 883: Domain names - implementation and sepcifi-
cation. ftp://ftp.rfc-editor.org/in-notes/rfc883.txt, November 1983. visited
June 14th, 2003.

[25] Jon Postel and Joyce Reynolds. IETF RFC 959: File transfer protocol.
ftp://ftp.rfc-editor.org/in-notes/rfc959.txt, October 1985. visited June
17th, 2003.

[26] Kekoa Proudfoot. RCX internals. http://graphics.stanford.edu/∼kekoa/rcx/,
1999. visited June 17th, 2003.

[27] Python XML Special Interest Group. Python/XML libraries.
http://pyxml.sourceforge.net/, June 2003. visited June 6th, 2003.

[28] Isaac Richards. MythTV. http://www.mythtv.org/, June 2003. visited June 29th,
2003.

[29] Marshall Rose. IETF RFC 3080: The blocks extensible exchange protocol core.
ftp://ftp.rfc-editor.org/in-notes/rfc3080.txt, April 2001. visited June 12th,
2003.

[30] Mahadev Satyanarayanan. Pervasive computing: Vision and challenges. IEEE
Personal Communications, pages 10–17, August 2001.

[31] Bill Schilit and Marvin Theimer. Disseminating active map information to mobile
hosts. IEEE Network, 8(5):22–32, 1994.

[32] Julian S. Taylor. The java problem. http://internalmemos.com/memos/memo-
details.php?memo id=1321, 2001. visited on June 16th, 2003.

[33] Cayce Ullman, Brian Matthews, Gregory Warnes, and Christopher Blunck.
SOAPpy. http://pywebsvcs.sourceforge.net/, June 2003. visited June 6th,
2003.

[34] Guido von Rossum. The python programming language. http://www.python.org/,
May 2003. visited May 30th, 2003.

[35] Yu Wang. Situation-aware middleware for application software development in
ubiquitous computing environments. Presentation to Department of Com-
puter Science, Illinois Institute of Technology, April 2003.

65

[36] Mark Weiser. The computer for the 21st century. Scientific American, September
1991.

[37] Stephen S. Yau, Fariaz Karim, Yu Wang, Bin Wang, and Sandeep K.S. Gupta. Re-
configurable context-sensitive middleware for pervasive computing. IEEE
Pervasive Computing, 1(3):33–49, July–September 2002.

